13 research outputs found

    Polls and the political process: the use of opinion polls by political parties and mass media organizations in European post‐communist societies (1990–95)

    Get PDF
    Opinion polling occupies a significant role within the political process of most liberal-capitalist societies, where it is used by governments, parties and the mass media alike. This paper examines the extent to which polls are used for the same purposes in the post-communist countries of Central and Eastern Europe, and in particular, for bringing political elites and citizens together. It argues that these political elites are more concerned with using opinion polls for gaining competitive advantage over their rivals and for reaffirming their political power, than for devolving political power to citizens and improving the general processes of democratization

    Integrative DNA, RNA, and Protein Evidence Connects TREML4 to Coronary Artery Calcification

    Get PDF
    Coronary artery calcification (CAC) is a heritable and definitive morphologic marker of atherosclerosis that strongly predicts risk for future cardiovascular events. To search for genes involved in CAC, we used an integrative transcriptomic, genomic, and protein expression strategy by using next-generation DNA sequencing in the discovery phase with follow-up studies using traditional molecular biology and histopathology techniques. RNA sequencing of peripheral blood from a discovery set of CAC cases and controls was used to identify dysregulated genes, which were validated by ClinSeq and Framingham Heart Study data. Only a single gene, TREML4, was upregulated in CAC cases in both studies. Further examination showed that rs2803496 was a TREML4 cis-eQTL and that the minor allele at this locus conferred up to a 6.5-fold increased relative risk of CAC. We characterized human TREML4 and demonstrated by immunohistochemical techniques that it is localized in macrophages surrounding the necrotic core of coronary plaques complicated by calcification (but not in arteries with less advanced disease). Finally, we determined by von Kossa staining that TREML4 colocalizes with areas of microcalcification within coronary plaques. Overall, we present integrative RNA, DNA, and protein evidence implicating TREML4 in coronary artery calcification. Our findings connect mulfimodal genomics data with a commonly used clinical marker of cardiovascular disease

    Integrative DNA, RNA, and protein evidence connects TREML4 to coronary artery calcification

    No full text
    Coronary artery calcification (CAC) is a heritable and definitive morphologic marker of atherosclerosis that strongly predicts risk for future cardiovascular events. To search for genes involved in CAC, we used an integrative transcriptomic, genomic, and protein expression strategy by using next-generation DNA sequencing in the discovery phase with follow-up studies using traditional molecular biology and histopathology techniques. RNA sequencing of peripheral blood from a discovery set of CAC cases and controls was used to identify dysregulated genes, which were validated by ClinSeq and Framingham Heart Study data. Only a single gene, TREML4, was upregulated in CAC cases in both studies. Further examination showed that rs2803496 was a TREML4 cis-eQTL and that the minor allele at this locus conferred up to a 6.5-fold increased relative risk of CAC. We characterized human TREML4 and demonstrated by immunohistochemical techniques that it is localized in macrophages surrounding the necrotic core of coronary plaques complicated by calcification (but not in arteries with less advanced disease). Finally, we determined by von Kossa staining that TREML4 colocalizes with areas of microcalcification within coronary plaques. Overall, we present integrative RNA, DNA, and protein evidence implicating TREML4 in coronary artery calcificati

    Next-generation sequencing for research and diagnostics in kidney disease

    No full text
    The advent of next-generation sequencing technologies has enabled genetic nephrology research to move beyond single gene analysis to the simultaneous investigation of hundreds of genes and entire pathways. These new sequencing approaches have been used to identify and characterize causal factors that underlie inherited heterogeneous kidney diseases such as nephronophthisis and congenital anomalies of the kidney and urinary tract. In this Review, we describe the development of next-generation sequencing in basic and clinical research and discuss the implementation of this novel technology in routine patient management. Widespread use of targeted and nontargeted approaches for gene identification in clinical practice will require consistent phenotyping, appropriate disease modelling and collaborative efforts to combine and integrate data analyses. Next-generation sequencing is an exceptionally promising technique that has the potential to improve the management of patients with inherited kidney diseases. However, identifying the molecular mechanisms that lead to renal developmental disorders and ciliopathies is difficult. A major challenge in the near future will be how best to integrate data obtained using next-generation sequencing with personalized medicine, including use of high-throughput disease modelling as a tool to support the clinical diagnosis of kidney diseases
    corecore